
Acuminator, Visual Studio and

other developer tools

Developer productivity and solution quality validation

Sergey Nikomarov
Senior System Developer

Acumatica

2

Agenda

Acuminator

➢ Acuminator 3.0.0 – new features

Visual Studio

➢ Overview

➢ Writing Code Effectively in Visual Studio

➢ Code Analysis

➢ Integration with external tools

Other Developer Tools

➢ Visual Studio alternatives

➢ Examples of useful Visual Studio plugins

3

Acuminator

4

New Features Overview

❑ Support of Visual Studio 2022

❑ Code analysis enhancements

❑ Code Map displays more information

❑ Suppression mechanism improvements

❑ Bugfixes

5

Acuminator: Static Code Analysis

6

Overview

❑ Throwing exception in row persisted graph event is now allowed if one of the following statements is

true:

• The graph is a processing graph

• The exception type is one of the allowed exception types or their descendant:

❖ PX.Data.PXRowPersistedException

❖ PX.Data.PXLockViolationException

❖ .NET exceptions from the System namespace: NotImplementedException, NotSupportedException,

ArgumentException

❑ Underscores are now allowed in DAC extension names

❑ PX1008 diagnostic is significantly extended

❑ PX1088 diagnostic is entirely removed

7

Common Mistake

Capturing reference to the screen graph in the long run delegate is a common error

Capturing reference to the screen graph will cause synchronous delegate execution and different tricky

issues including data consistency problems.

Here is a correct way to use graph instance methods in long run delegates

// Reference to the graph is captured by the delegate because
// GraphInstanceMethod is an instance method of the graph
PXLongOperation.StartOperation(this, delegate() { GraphInstanceMethod(myDac); });

PXLongOperation.StartOperation(this, delegate()
{

MyGraph graph = PXGraph.CreateInstance<MyGraph>();
graph.GraphInstanceMethod(myDac);

});

8

PX1008 Diagnostic

❑ In previous versions of Acuminator performed search for captured graph reference in processing

delegates

❑ Now this diagnostic also validates long run delegates

9

Acuminator: Code Map

10

Code Map Improvements

Different icons for DACs, DAC extensions,

graphs, and graph extensions

The Code Map window layout now is

remembered by Visual Studio

DAC nodes now indicate whether the node represents a

DAC or a DAC extension

11

Base Overrides Category

❑ For graphs and graph extensions

overrides of virtual type members

are now displayed under the new

Base Overrides node.

❑ The Persist method overrides

are indicated with a special

diskette icon

12

Initialization and Activation Category

❑ New types of nodes represent:

• Graph instance and static constructors for

graphs and graph extensions

• The IsActive method for graph and DAC

extensions

❑ Initialization and Activation category node

will contain these new nodes

13

Visual Studio

14

Visual Studio in comparison with other tools

Visual Studio

15

Visual Studio features

❑ Read code with syntax highlighting and code regions folding

❑ Write code with intelligent code completion, code snippets, multiple carets, keyboard shortcuts

❑ Search your code with different search mechanisms

❑ Check your code with code analysis diagnostics

❑ Debug your code step by step, check objects in memory and modify their state

❑ Collaborate with your teammates with “Live Share” feature

❑ Modify your code during debug with “Hot reload” feature

❑ Profile your code with different diagnostic tools

❑ Integration with Version Control Systems like Git and other external tools

❑ Support for unit tests

❑ Highly configurable and extendable with many available plugins

❑ Many other things – C# interpreter, navigation to decompiled sources, etc.

16

Visual Studio: Writing Code Effectively

17

Overview

Different ways to boost our code writing skills:

❑ Code Completion

❑ Clever suggestions made with ML models

❑ Refactorings (renaming) and Code Fixes

❑ Code Snippets

❑ Keyboard Shortcuts

❑ Multiple Carets

❑ Code generation

❑ Automatic Formatting and Code Cleanup

❑ Other things

18

Visual Studio Options

Visual Studio options are located in: “Tools” → “Options…”

19

IntelliSense Code Completion

❑ IntelliSense – advanced code completion VS functionality

❑ IntelliSense suggests possible options while you type

❑ Suggestions may include types, local variables, method parameters,

type members, extensions methods and code snippets

❑ The list of variants depends on the context. It is affected by the

programming language, framework, type of the document, caret

location and some other things.

❑ Settings for C# are stored in Visual Studio options:

• “Text Editor” → “C#” → “General”

• “Text Editor” → “C#” → “IntelliSense”

❑ IntelliSense commands can be accessed in “Edit” → “IntelliSense”

top level menu

20

IntelliCode Model Training

❑ IntelliCode – machine learning Visual Studio

functionality that relies on predictive model

trained on GitHub open-source repos

❑ IntelliCode trains ML models on your code base

to provide context-specific suggestions

❑ IntelliCode model training functionality is

located in:

“View” → “Other Windows” → “IntelliCode”

❑ Trained models can be shared with your team

❑ Retraining can be done as a step in the CI

pipeline

21

IntelliCode ML Features

❑ AI-assisted IntelliSense – IntelliSense code completion

extension that predicts API that are most likely to be used

• Suggestions are marked with a star and placed first in the

list of available variants

• Argument completion for C#

• Suggestions based on your own code for C#

❑ Refactoring suggestions for C# – track your edits, detect

repetitive actions and offer to apply these actions in similar

places

❑ Whole line completions – predict the next chunk of your code

and present it as a gray text inline prediction

• Available only in Visual Studio 2022

• Can be configured by pressing lightbulb at the bottom

right of the editor

❑ .editorconfig file generation with code style and formatting

conventions inferred from the C# code base

22

Keyboard Shortcuts

❑ Keyboard shortcuts allow user to quickly perform

some action by pressing a combination of keys on

keyboard

❑ Well-known examples:

• Copy / Paste with Ctrl + C / Ctrl +V

• Cancel with Ctrl + Z

• Search / Replace with Ctrl + F / Ctrl + H

❑ Most Visual Studio commands support shortcuts

and have a default shortcut assigned

❑ Plugins may provide their own shortcuts

❑ Custom shortcuts can be assigned to Visual Studio

command even if it does not have a default one

❑ Shortcut settings can be accessed in Visual Studio

options:

“Environment” → “Keyboard”

23

Useful Keyboard Shortcuts

❑ Duplicate selected line with Duplicate command

• Can be accessed with “Edit” → “Duplicate”

• Look for Edit.Duplicate command in shortcut settings to assign

a shortcut

❑ Change indent of selected line

• Increase indent with Tab

• Decrease indent with Shift + Tab

❑ Call IntelliSense code completion suggestions with Ctrl + Space

❑ Move selected lines up and down

• Move up with Alt + Up arrow

• Move down with Alt + Down arrow

❑ Other scenarios

• Custom shortcuts for Visual Studio extensions

• Text selection

• Multiple Carets

• Other

24

Multiple Carets

❑ Multiple Carets allows you to edit multiple places of

your code by creating multiple carets and applying

changes to all of them simultaneously

❑ Multiple Carets works with the text selected in the

code editor. It finds occurrences of the same text in

the document and creates extra carets for them

❑ Carets can be created for all occurrences of the

selected text or only for some of them

❑ Multiple Carets can be found in

“Edit” → “Multiple Carets”

❑ Shortcuts are much more convenient

• Insert Carets at All Matching Shift + Alt + ;

• Insert Next Matching Caret Shift + Alt + .

25

Code Snippets Overview

❑ Code Snippets – small blocks of reusable code that can be quickly inserted into your

document

❑ Snippets can contain placeholders with different names that you replace with your code.

❑ The replacement will be done for every instance of the same placeholder in the inserted

snippet

❑ Two types of code snippets

• Expansion snippets inserted at the cursor position

• Surround With snippets that surround selected code

❑ Extra features:

• Generate cases for every member of enum in a code snippet for the switch statement

• Add missing using for namespaces

• Add references to assemblies from Global Assembly Cache (GAC)

26

Managing Code Snippets

❑ Visual Studio comes with a lot of code snippets for different

programming languages and frameworks

❑ You can write your own code snippets and import them in Visual

Studio

❑ Code Snippets are XML files with .snippet extension

❑ Custom code snippets are stored in Visual Studio subfolder in

current user documents:

<Current User Folder>\Documents\<Visual Studio version>

There should be a dedicated subfolder:

\Code Snippets\Visual C#\My Code Snippets

❑ You can manage code snippets in the “Code Snippets Manager”

“Tools” → “Code Snippets Manager”

27

Acumatica Code Snippets

❑ Acumatica Code Snippets – code snippets developed for Acumatica Framework

❑ Acumatica Code Snippets include templates for

• DAC

• DAC fields

• Graph field and row events

o Name Convention Signature

o Generic Signature

o Short Generic Signature for field events

❑ Available on GitHub: https://github.com/Acumatica/CodeSnippets

❑ Acumatica Code Snippets can be imported into Visual Studio manually

❑ Acuminator next version will include Acumatica Code Snippets collection

https://github.com/Acumatica/CodeSnippets

28

C# Interactive

❑ C# interactive is a useful tool for quickly running a piece of code

❑ C# Interactive is based on C# read-evaluate-print-loop (REPL) functionality

❑ Located in “View” → “Other Windows” → “C# Interactive”

❑ You can run it either line by line or from a script

29

Visual Studio: Code Analysis

30

Overview

❑ Code analysis for C# and VB in modern versions of Visual Studio is based on Roslyn framework

❑ Library authors can provide custom diagnostics verifying that their API is used correctly

❑ xUnit

❑ Acuminator

❑ Advanced general-purpose diagnostics developed by community as open-source projects

❑ Many ways to suppress a particular error – pragma directives, special attributes, project settings,

.editorconfig and .ruleset files

❑ Two ways to add custom diagnostics to the solution

• Install Visual Studio extension to use diagnostics only for yourself

• Add a Nuget package with diagnostics to the project to enforce rules for everyone in the team

31

Code Analysis Settings

❑ Each language has its own code analysis settings

• C# settings can be found in

“Text Editor” → “C#” → “Advanced” → “Analysis”

❑ Some settings affect Visual Studio performance

▪ Background analysis scope

▪ Run code analysis in a separate process in VS 2022

▪ Use 64-bit process for code analysis in VS 2019

❑ Enable built-in decompiler with “Enable navigation to

decompiled sources”

❑ Try experimental “Display diagnostics inline” feature

32

Project specific settings

❑ .Net projects have project specific code analysis

settings

❑ Some code analysis settings can be accessed

in project “Properties” window

❑ Code Analysis section is related to a legacy

FxCop code analysis and is deprecated

❑ Build section contains analysis settings

• Warning level. For higher levels compiler

provides more warnings

• Disabled warnings

• Treat warnings as errors

❑ More settings can be specified directly in the

project file

33

Manually Run Code Analysis on Solution

❑ Commands to run code analysis manually are located in

“Analyze” → “Run Code Analysis”

❑ You can run code analysis for the current project of for the entire solution

❑ All errors are listed in the “Error List” window

❑ Works in latest versions of Visual Studio 2019 and 2022

34

Integration with Other Tools

35

Different Integration Approaches

❑ Integrations built-in into Visual Studio

• Git and other Version Control Systems

• SQL Server

• Unity and other game engines

• Unit test frameworks

❑ Integrations provided by plugins

• “Open with XXX” plugins that allow you to open file in a

different tool

• Support for different frameworks and tools

❑ Add tool to Visual Studio External Tools list located in

“Tools” → “External Tools”

❑ Specify external tool as a designer for files with specific

extension

36

External Tool Editor

❑ Visual Studio allows you to choose which tool should be

used to open files with specific extension

❑ The editor selection dialog is located in “Solution

Explorer” window in the context menu

❑ Select required file, make right mouse button click on it

and select “Open With…” command

❑ There are many available editors shipped with Visual

Studio that can be used to open the file

❑ External tools can be added to available editors

❑ One of the editors can be selected as a default editor for

files with the same extension

❑ Report Designer can be set as a default editor for

Acumatica .rpx reports

37

Visual Studio Git Integration

❑ Git – the most popular version control system used by many

projects for collaborative development

❑ Git is a console application but there are many UI clients

❑ Visual Studio Git Integration is another UI client for Git

❑ Repository settings, branches and changes are displayed

❑ Simple Git workflow actions can be used from Visual Studio

38

Git Settings

❑ Git settings are located in Visual Studio options in “Source Control” section

❑ Two sets of settings – global settings for all repositories and local repository settings

39

Other Developer Tools

40

Alternatives to Visual Studio

❑ Visual Studio Code

❑ Notepad++

❑ Jet Brains tools

• Rider IDE

• dotTrace and dotMemory for profiling

• dotPeek decompiler

41

Useful Visual Studio Extension

❑ ReSharper and OzCode

❑ Code Analysis extensions

• Roslynator – 500+ analyzers, refactorings and code fixes for C#

• StyleCop – rules to enforce style and consistency rules for source code

❑ Visual Studio Spell Checker and other spell-checking extensions

❑ Debug Attach Manager for easy attaching to IIS processes

• ReAttach as alternative

❑ Syntax highlight extensions – Viasfora, Codinion and many others

❑ Productivity extensions

• Open in XXX extensions – Open in Visual Studio Code, Open in Notepad++

• Match Margin / Match Margin 2022 to display occurrences of the selected word in scroll bar

• Code alignment aligns your code vertically to improve readability

❑ Atomineer Pro Documentation for clever generation of XML doc comments

• GhostDoc as alternative

42

Summary

Tools that boost developer productivity, ensure product quality and take care of routine tasks

❑ Acuminator – new version with support of Visual Studio 2022, improved code checks and new data

displayed on Code Map

❑ Visual Studio – know your code editor!

• Customize appearance

• Enable advanced features and optimize performance

• Write code faster

• Configure code analysis

• Integrate with other tools

❑ Other Tools – useful plugins and alternatives to Visual Studio

43

Resources – Acuminator

❑ Acuminator Release Notes:

https://github.com/Acumatica/Acuminator/blob/dev/docs/ReleaseNotes.md

❑ Overview of all diagnostics:

https://github.com/Acumatica/Acuminator/blob/dev/docs/Summary.md

❑ Acuminator is an open-source project. The list of issues:

https://github.com/Acumatica/Acuminator/issues

https://github.com/Acumatica/Acuminator/blob/dev/docs/ReleaseNotes.md
https://github.com/Acumatica/Acuminator/blob/dev/docs/Summary.md
https://github.com/Acumatica/Acuminator/issues

44

Resources – Visual Studio

❑ Visual Studio Blog

https://devblogs.microsoft.com/visualstudio/

❑ Editor features overview

https://docs.microsoft.com/en-us/visualstudio/ide/writing-code-in-the-code-and-text-editor?view=vs-2022

❑ Keyboard shortcuts

https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-

studio?view=vs-2022

❑ Tips for C# developers

https://docs.microsoft.com/en-us/visualstudio/ide/csharp-developer-productivity?view=vs-2022

❑ IntelliCode

https://docs.microsoft.com/en-us/visualstudio/intellicode/intellicode-visual-studio

❑ Code Snippets

▪ C# Code Snippets

https://docs.microsoft.com/en-us/visualstudio/ide/visual-csharp-code-snippets?view=vs-2022

▪ Snippets for Acumatica

https://github.com/Acumatica/CodeSnippets

https://devblogs.microsoft.com/visualstudio/
https://docs.microsoft.com/en-us/visualstudio/ide/writing-code-in-the-code-and-text-editor?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/ide/csharp-developer-productivity?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/intellicode/intellicode-visual-studio
https://docs.microsoft.com/en-us/visualstudio/ide/visual-csharp-code-snippets?view=vs-2022
https://github.com/Acumatica/CodeSnippets

Thank You!
www.acumatica.com/developers

46

Extra

47

Visual Studio: Code Editor Appearance

48

Syntax Highlighting

Visual Studio highlights common C# syntax

elements

It supports custom syntax highlighting

Visual Studio allows you to override default

colors, backgrounds and fonts for any

colorable code element

You can access syntax highlighting settings

via “Tools” → “Options” menu. Here look for

the “Environment” → “Fonts and Colors”

section

Overrides are stored separately for each

Visual Studio Theme

You can always reset color to default one

49

Code Outlining

Visual Studio supports code outlining (or code

folding)

You can collapse some code fragments to get a

better overview of the overall structure:

• curly braces

• #regions

• XML doc comments

Acuminator adds outlining for attributes and BQL

parts

A tooltip with contents is displayed on mouse

hover

Code editor context menu contains commands

that can hide the selected text or manage the

outlining for the whole file

50

Code Outlining Settings

❑ C# outlining settings in Visual Studio options: “Text Editor” → “C#” → “Advanced” → “Outlining”

❑ Enable “Collapse #regions when collapsing to definitions” for better experience with DACs

51

General Settings

❑ Code editor is highly configurable

❑ Different indicators, controls, lines and margins can be

hidden

❑ Text display can be customized

❑ Default values are sensible

Some interesting settings:

• Drag and drop of the selected text can be disabled

• Subword selection can be enabled

• Disable .editorConfig files support for your Visual Studio

• Configure Go to Definition with mouse click

• Enable peek view

• Enable the display of tabs and whitespaces

52

C# Settings

❑ Many languages have their own section with

language specific settings

❑ All Languages allows to configure common

settings like indentation for all languages

Interesting C# specific settings:

• Enable virtual space at the end of the line

• Enable word wrap

• Disable line numbers

53

Scroll Bar

❑ Scroll bars can be configured independently for any

language or in a uniform way for all languages

❑ All Languages allows to configure common settings like

indentation for all languages

❑ A map mode for vertical scroll bar will draw a small overview

of the opened file in the vertical scroll bar

❑ If the preview tooltip is enabled, it will display a code

fragment from the file on mouse hover

54

Line Separators

Line Separators are gray horizontal lines that separate different types and type members

There must be at least one empty lines between adjacent code elements.

Switch to enable Line Separators is located in the Outlining settings

55

Document Tabs

❑ Document Tabs – tabs with opened documents that

allow you to switch between them

❑ Document Tabs support behavior of any Visual Studio

tool window (drag and drop, docking, etc.)

❑ Document Tabs layout can be changed. You can place

them on top of the editor, to the left or to the right

❑ Settings are located in

“Options” → “Environment” → “Tabs and Windows”

❑ Document Tabs can be colorized based on document’s

project of file extension

❑ Document Tabs can be pinned. When Document Tabs

are located on top of the code editor Pinned Tabs can be

placed in a separate row

